Mars Exploration News  
MARSDAILY
Surviving the Inferno of Entry, Descent and Landing
by Kristyn Damadeo for LRC News
Hampton VA (SPX) May 04, 2018

Langley researchers from left, Carlie Zumwalt, flight dynamics engineer, Rob Maddock, team lead, and Daniel Litton, flight dynamics engineer, compiled thousands of lines of code and used models trying to run through as many possible entry, descent and landing scenarios for Mars InSight as possible.

Anticipation is building as preparations are well underway for the launch of NASA's next Mars mission, InSight. But before the roar of the rocket lifting off from Vandenberg Air Force Base has subsided, a NASA team will be hard at work preparing for the lander's eventual plunge through the Martian atmosphere.

Experts from NASA's Langley Research Center are key to providing modeling and computer simulations, which will be used by the InSight entry, descent and landing (EDL) team led by NASA's Jet Propulsion Laboratory along with Lockheed Martin Space and NASA's Ames Research Center.

Since early missions, such as Viking in 1976, Langley has played a central role in EDL simulations. The Langley group, led by Rob Maddock with Carlie Zumwalt, Alicia Dwyer Cianciolo, and Daniel Litton, is continuing that job today, building on previous projects including the Mars Science Laboratory, one of the largest and most complicated landings so far, and Phoenix, which is very similar to InSight.

"EDL has historically been a NASA Langley role in missions, ever since Viking, we've been known as 'the center' for EDL simulations," Maddock said.

And it's not an easy job. It's difficult to land on other planets, there are a lot of factors, and EDL performance assessment seeks to accurately predict what conditions will be like.

"We run simulations given all of the unknowns so that we can safely land where we want to," Maddock said.

"The atmosphere is the biggest uncertainty."

The team has been running through as many possible scenarios as possible, using unique simulations first developed during the 1960s that have been validated and updated with experience. After launch, however, they will be able to verify their models against the actual performance.

During the six-month flight to Mars, the team will acquire data allowing them to add current conditions to their models and simulations, replacing some of the unknowns and estimates. There are opportunities to make adjustments to the trajectory and the flight software starting about a month after launch all the way up to entry into the Martian atmosphere. The data collected during flight analyses will help inform the decision to make any potential modifications.

InSight's launch period is May 5 through June 8, 2018. Whichever date the launch occurs, InSight's landing on Mars is planned for Nov. 26, 2018, around 3 p.m. EST.

The team will support operations at landing. EDL begins when the spacecraft arrives about 80 miles above the surface of Mars and ends after about six minutes with the lander safe on the ground.

For InSight, this phase will be very similar to NASA's Phoenix Mars Lander with a few key differences. InSight will enter the atmosphere at a higher velocity than Phoenix and has more mass. It will also land at a higher elevation so it has less atmosphere to use for deceleration, and the area is prone to dust storms. To address these challenges, InSight uses a thicker heat shield and its parachute will open at higher speed with stronger suspension lines.

After landing, the EDL team's job is not over. They will complete what they call 'reconstruction.'

"We will take the data (acceleration, inertial measurement unit, trajectory) and rebuild what happened during the actual landing to try and update our simulations and build better predictions," Maddock said.

NASA's Interior Exploration using Seismic Investigations, Geodesy, and Heat Transport (InSight) lander will study the deep interior of Mars to learn how all rocky planets formed, including Earth and its moon. The lander's instruments include a seismometer to detect marsquakes and a probe that will monitor the flow of heat in the planet's subsurface.

NASA' s Jet Propulsion Laboratory in Pasadena, California, manages InSight for NASA's Science Mission Directorate. InSight is part of NASA's Discovery Program, managed by the agency's Marshall Space Flight Center in Huntsville, Alabama. The InSight spacecraft, including cruise stage and lander, was built and tested by Lockheed Martin Space in Denver.

NASA's Launch Services Program at the agency's Kennedy Space Center in Florida provides launch management. United Launch Alliance of Centennial, Colorado, is NASA's launch service provider of the Atlas 5 rocket. A number of European partners, including France's Centre National d'Etudes Spatiales (CNES) and the German Aerospace Center (DLR), are supporting the InSight mission.


Related Links
InSight at NASA
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MARSDAILY
Results of Mars 2020 heat shield testing
Pasadena CA (JPL) Apr 30, 2018
A post-test inspection of the composite structure for a heat shield to be used on the Mars 2020 mission revealed that a fracture occurred during structural testing. The mission team is working to build a replacement heat shield structure. The situation will not affect the mission's launch readiness date of July 17, 2020. Project management at NASA's Jet Propulsion Laboratory in Pasadena, California, is working with contractor Lockheed Martin Space, Denver, to understand the cause of the fracture a ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MARSDAILY
Take me to the Moon

NASA expands plans for Moon exploration

Russian cosmonaut could ride US spacecraft to Moon for first mission

Lunar Orbital Platform Gateway is First Step Towards Mars - ESA Coordinator

MARSDAILY
China to Use Soviet Engine to Power Its First Reusable Space Rocket

Astronauts eye more cooperation on China's space station

China unveils underwater astronaut training suit

China to launch advanced space cargo transport aircraft in 2019

MARSDAILY
Exiled Asteroid Discovered in Outer Reaches of Solar System

Projectile cannon experiments show how asteroids can deliver water

Lyrid meteor shower to peak over the weekend

Close Call: Giant Asteroid Flies Through the Earth-Moon Orbit

MARSDAILY
Fresh results from NASA's Galileo spacecraft 20 years on

What do Uranus's cloud tops have in common with rotten eggs?

Pluto's Largest Moon, Charon, Gets Its First Official Feature Names

Pluto's largest moon, Charon, gets its first official feature names

MARSDAILY
MARSDAILY
CryoSat reveals retreat of Patagonian glaciers

Moon holds key to improving satellite views of Earth

Twin spacecraft to weigh in on Earth's changing water

Earth's magnetic field is not about to reverse

MARSDAILY
Russia Offers Space Tourist Flight to US, European Astronauts, UAE Citizen

Jim Bridenstine brings understanding of commercial technology to his new role as NASA Admin

Tourism nearly a tenth of global CO2 emissions

Why plants are so sensitive to gravity: The lowdown

MARSDAILY
An Exoplanet Atmosphere Free of Clouds

Dutch astronomers photograph possible toddler planet by chance

The Cheops ccience instrument arrives in Madrid

Hubble detects helium in the atmosphere of an exoplanet for the first time









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.